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Abstract Resonance assignment is the first step in NMR

structure determination. For magic angle spinning NMR,

this is typically achieved with a set of heteronuclear cor-

relation experiments (NCaCX, NCOCX, CONCa) that

utilize SPECIFIC-CP 15N–13C transfers. However, the

SPECIFIC-CP transfer efficiency is often compromised by

molecular dynamics and probe performance. Here we show

that one-bond ZF-TEDOR 15N–13C transfers provide

simultaneous NCO and NCa correlations with at least as

much sensitivity as SPECIFIC-CP for some non-crystalline

samples. Furthermore, a 3D ZF-TEDOR-CC experiment

provides heteronuclear sidechain correlations and robust-

ness with respect to proton decoupling and radiofrequency

power instabilities. We demonstrate transfer efficiencies

and connectivities by application of 3D ZF-TEDOR-

DARR to a model microcrystalline protein, GB1, and a less

ideal system, GvpA in intact gas vesicles.

Keywords 3D MAS NMR � TEDOR � DARR �
Sidechain-backbone correlation

Introduction

Magic angle spinning nuclear magnetic resonance (MAS

NMR) is a burgeoning approach to characterizing the

structure and dynamics of such otherwise intractable sys-

tems as membrane proteins (Andreas et al. 2010, 2012;

Higman et al. 2009; Eddy et al. 2012a; Ader et al. 2010;

Bhate et al. 2010; Higman et al. 2011; Li et al. 2008;

Renault et al. 2011; Varga et al. 2007), and amyloid fibrils

(Bateman et al. 2011; Bayro et al. 2010, 2011, 2012;

Debelouchina et al. 2010a, b; Hu et al. 2011; Jaroniec et al.

2002a; Kryndushkin et al. 2011; Comellas et al. 2012;

Lemkau et al. 2012; Li et al. 2011; Lv et al. 2012; Par-

avastu et al. 2008, 2009; Qiang et al. 2012; Sivanandam

et al. 2011; Van Melckebeke et al. 2010; Wasmer et al.

2008). To date, twenty-five unique protein structures

determined by MAS NMR have been deposited in the

protein data bank (Bernstein et al. 1977; Warschawski

2011) and further advances in NMR methodology, high

field instrumentation, and sensitivity-enhancing techniques,

such as dynamic nuclear polarization, promise to increase

this number dramatically in the near future.

The first step in determining a protein structure by NMR

is identifying and assigning individual nuclear resonances.

For large biomolecules this often requires 3D heteronuclear

experiments to remove degeneracies. For MAS NMR, the

typical assignment protocol relies on a set of complementary

3D 13C detected spectra that include NCOCX, NCaCX, and

CONCa (or CaNCO). These experiments provide intra-res-

idue correlations (NCaCX) and inter-residue correlations

(NCOCX and CONCa) that, in principle, establish complete

backbone and sidechain connectivities. In combination with

both selective and extensive labeling, this approach has been

applied successfully to a number of systems (Higman et al.

2009; Sperling et al. 2010; Bockmann 2008).
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One-bond 15N–13C transfers following 15N evolution in

NCC experiments are typically achieved with SPECIFIC-

CP (Baldus et al. 1998) rather than other N–C recoupling

methods such as TEDOR (Hing et al. 1992) or broadband

DCP (Schaefer et al. 1979). This is motivated by the fact

that SPECIFIC-CP transfers should, in principle, yield the

highest transfer efficiencies (theoretically up to 73 %).

While other heteronuclear recoupling methods have been

proposed to compensate for rf imperfections (Kehlet et al.

2007; Hansen et al. 2007) and may arguably perform better

than SPECIFIC-CP, SPECIFIC-CP remains the most

widely used method. As such, it provides a good benchmark

for assessing alternative approaches. Other heteronuclear

(primarily 13C–15N) recoupling methods include REDOR

(Gullion and Schaefer 1989), FDR (Bennett et al. 1994),

SFAM (Fu et al. 1997), RFDRCP (Sun et al. 1995), CNv
n and

RNv
n (Brinkmann and Levitt 2001; Zhao et al. 2001) and

PAIN-CP (Lewandowski et al. 2007). The robustness of

these sequences can be distinguished by a number of cri-

teria, including chemical shift offset dependence, scaling of

the recoupling effect, power stability, and sensitivity to

experimental imperfections. It is important to consider such

practical differences when selecting mixing schemes for

correlation spectroscopy in proteins, particularly when two

or more methods are integrated into a single experiment.

An additional consideration arises from molecular

motion. While nearly-ideal SPECIFIC-CP transfer effi-

ciencies are reported for rigid crystalline or microcrystal-

line systems, such as the N–f–MLF–OH peptide (Rienstra

et al. 2000) and the GB1 protein (Franks et al. 2005), the

situation is very different for non-crystalline systems,

including some membrane proteins and amyloid fibrils

where the SPECIFIC-CP transfer is adversely affected by

molecular motions on the intermediate timescale (Sperling

et al. 2010).

ZF-TEDOR and BASE-TEDOR (Jaroniec et al. 2002b)

are popular methods for measuring precise long-range

intra-molecular (Jaroniec et al. 2002a) and intermolecular

(Nieuwkoop and Rienstra 2010) distance constraints. Ri-

enstra and coworkers have also reported success in using

short and medium-range ZF-TEDOR, combined with 2-13C

and 1,3-13C glycerol labeling, to obtain proline and glycine

assignments and connectivities in 2D experiments (Sper-

ling et al. 2010). Furthermore, Jaroniec and coworkers

showed that a semi-constant-time (SCT)-TEDOR scheme

boosts the sensitivity for weak 15N–13C(methyl) signals,

permitting selective measurement of distances longer than

3.5 Å in uniformly 13C–15N labeled proteins (Helmus et al.

2008). However, TEDOR has not been widely applied for

one-bond transfers in 3D NCC experiments. Although a 2D

version of the NCC transfer experiment has been used for

assignment of RNAs (Riedel et al. 2005), and the 3D

version has recently been implemented for a membrane

protein (Andreas et al. 2012), neither of these studies

addressed the merits of the TEDOR transfer step relative to

other N–C transfer mechanisms.

Here we present detailed comparisons of SPECIFIC-CP

and ZF-TEDOR transfer efficiency in uniformly 15N,13C

labeled GB1 and GvpA. These data motivate a 3D ZF-

TEDOR-DARR pulse sequence that allows us to generate

simultaneous NCaCX and NCOCX correlations in a single

3D experiment. The increased sweep width for the second

indirect dimension can be easily compensated for by non-

uniform sampling (Eddy et al. 2012b; Matsuki et al. 2010;

Matsuki et al. 2009) or by simply folding the spectra

(Andreas et al. 2012).
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Fig. 1 The 3D NCC z-filtered TEDOR-DARR pulse sequence.

Narrow and wide filled rectangles represent p/2 and p pulses,

respectively. During the TEDOR mixing, p pulses are applied on the
15N channel and phase cycled according to the xy-4 scheme. The short

delay, s, after the f1
15N evolution period ensures that the total delay

between the REDOR mixing periods is equal to an integer number of

rotor cycles as required for efficient reconversion of the anti-phase

coherences into observable 13C magnetization. In the experiment pre-

sented here, the value of s is chosen to maintain rotor

synchronization, since the dwell time for the 15N dimension is set

at exactly two rotor periods. Application of a weak proton field,

xrf = xr, during the z-filters and the DARR mixing time facilitates

rapid dephasing of 13C spin coherences in the former and diffusion of

the 13C spin polarization in the latter. The adopted phase cycles are:

U1 = 1111, U2 = 2222, U3 = U6 = 1111, U4 = U7 = 1111, U5 =

1111, U8 = 2244, U9 = 1111, U10 = 2244, U11 = 1111, U12 =

1111, U13 = 1313, and Urec = 4224
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Materials and methods

Sample preparation

Uniformly 13C,15N GB1 was prepared according to previ-

ously published protocols (Franks et al. 2005; Schmidt

et al. 2007). Uniformly 13C,15N GvpA was prepared

according to previously published procedures (Bayro et al.

2012; Sivertsen et al. 2009, 2010). The samples were

centrifuged into 3.2 zirconia mm rotors and the drive tips

were sealed with epoxy to maintain sample hydration.

1D MAS NMR experiments

The 1D 15N–13C spectra were obtained at a spinning fre-

quency of 13.0 kHz, on a custom-built spectrometer

(courtesy of Dr. D. Ruben, Francis Bitter Magnet Labora-

tory/MIT, Cambridge, MA, USA) operating at 750 MHz
1H Larmor frequency and equipped with a triple-resonance
1H/13C/15N 3.2 mm E-free probe (Bruker Biospin, Bille-

rica, MA, USA).

184 180 176 172 168 66 62 58 54 50 46
13C Chemical shift (ppm)

184 180 176 172 168
13C Chemical Shift (ppm)

13C Chemical shift (ppm)

66 62 58 54 50 46
13C Chemical Shift (ppm)

GV NCO GV NCA

GB1 NCO GB1 NCAFig. 2 1D 13C detected

comparison of 15N–13C transfer

methods for GB1 (top) and

Gvpa (bottom) in the CO (left)
and Ca regions (right). 1D 13C

CP only (dash), SPECIFIC-CP

(dot), broadband DCP (dash-

dot–dot), and one-bond

optimized ZF-TEDOR (dash-

dot). 100 kHz 1H decoupling

was used during all the 15N–13C

recoupling periods

Table 1 Relative 15N–13C transfer efficiencies for GB1 and GvpA

Sample 13C

CP

SPECIFIC CP

NCa

SPECIFIC CP

NCO

Broadband DCP

NCa

Broadband DCP

NCO

ZF-TEDOR

NCa

ZF-TEDOR

NCO

GB1 1.0 0.42 0.55 0.17 0.41 0.29 0.34

GvpA 1.0 0.19 0.27 0.05 0.20 0.18 0.23

13C Chemical shift (ppm)

62 58 54 50 4666

Fig. 3 1D 13C detected comparisons of 15N–13C heteronuclear

transfer at varying levels of 1H decoupling in GvpA. Top SPE-

CIFIC-CP NCa with 100 kHz (dash), 83 kHz (dot), and 71 kHz

(dash-dot) 1H decoupling. Bottom 1.28 ms ZF-TEDOR with 100 kHz

(dash), 83 kHz (dot), and 71 kHz (dash-dot) 1H decoupling
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The NCO SPECIFIC-CP condition was optimized to match

2.5 times the rotor frequency (xr) on 15N (*32.5 kHz) and

3.5 9 xr on 13C (45.5 kHz), with 100 kHz 1H CW decou-

pling during the transfer. The 13C carrier was set to the middle

of the CO region (176 ppm), the 15N carrier to 115 ppm, and

the 1H carrier to 4 ppm.

The NCa SPECIFIC-CP condition was optimized to

match 1.5 9 xr on 15N and 2.5 9 xr on 13C, with 100 kHz
1H CW decoupling during the transfer. The 13C carrier was

set to 57 ppm, the 15N carrier to 115 ppm, and the 1H

carrier to 4 ppm. The optimal NCa contact time was found

to be 6 ms for both GB1 and GvpA.

Broadband DCP was optimized for overall (both NCa

and NCO) transfer efficiencies. This caused suboptimal

NCO and NCa transfers individually, but gave the overall

highest simultaneous signal. To achieve this, the 13C carrier

was set to 110 ppm, with radio frequency matching con-

ditions of 2.5 9 xr on 15N (*32.5 kHz) and 3.5 9 xr on
13C (45.5 kHz), and 100 kHz 1H CW decoupling during

the transfer. The optimal DCP contact time was found to be

7 ms for both GB1 and GvpA.

The ZF-TEDOR experiments were performed using

50 kHz for both the 13C and 15N pulses. The mixing period

was optimized to 1.28 ms for one bond 15N–13C transfer.

(Jaroniec et al. 2002b).

For all 1D comparisons, 83 kHz TPPM 1H decoupling

was used during acquisition (total phase difference, 14�;

TPPM pulse length 5.8 ls). Chemical shifts were refer-

enced using the DSS scale (Morcombe and Zilm 2003),

with adamantane (40.48 ppm for 13C) as a secondary
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Fig. 4 Slices of the ZF-TEDOR-DARR spectrum of GB1 at the 15N frequencies of the L12 (a), V21 (b) and V54 (c) amides
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standard. Relative NCO transfer efficiencies were deter-

mined by integrating the region from 170 to 182 ppm

(omitting the carboxyl peaks) for GB1 and GV, while

relative NCa transfer efficiencies were determined by

integrating the region from 50 to 63 ppm for GV and 47 to

63 ppm for GB1, assuring that only polarization from Ca

carbons was used to evaluate transfer efficiencies.

3D MAS NMR experiments

The ZF-TEDOR-DARR pulse sequence for these experi-

ments is shown in Fig. 1. In these experiments, the dwell

time in the x1 dimension was synchronized to twice the

rotor period (corresponding to bandwidth of xR/2), in order

to fold the nitrogen spinning sidebands onto the centerband

and to retain the heteronuclear dipolar recoupling during

each ZF-TEDOR period. As a consequence, the resonances

of the amino terminus of the backbone and the lysine

sidechains are folded. The chemical shifts were referenced

using the DSS scale (Morcombe and Zilm 2003), with

adamantane (40.48 ppm for 13C) as a secondary standard.

All the data were processed with the NMRPipe (Delaglio

et al. 1995), and subsequently analyzed using SPARKY 3

(T. D. Goddard and D. G. Kneller, University of California,

San Francisco).

The 3D experiments on GB1 were performed using a

custom-built spectrometer (courtesy of Dr. D. Ruben,

Francis Bitter Magnet Laboratory/MIT, Cambridge, MA,

USA) operating at 700 MHz 1H Larmor frequency and

equipped with a triple-resonance 1H/13C/15N probe with a

3.2 mm MAS stator (1H/13C/15N Varian-Chemagnetics

Palo Alto, CA). The spinning frequency of 13.3 kHz,

regulated to ±5 Hz using a Bruker (Bruker Biospin,

Billerica, MA, USA) spinning frequency controller, was set

to avoid the rotational resonance condition of the carbonyls

with the aromatics and CA0s. The 13C and 15N p/2 pulses

were 5 ls. TPPM decoupling was 71 kHz (total phase

difference,18�; TPPM pulse length 6.8 ls) during gaps

between REDOR pulses and 71 kHz (total phase difference

22�; TPPM pulse length 6.8 ls) during evolution and

acquisition periods. Mixing periods were 1.2 ms for ZF-

TEDOR, optimized for one-bond transfers, and 40 ms for
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Fig. 5 Slices of the ZF-TEDOR-DARR spectrum of GvpA at the 15N frequencies of the S49 (a) and Y56 (b) amides

J Biomol NMR (2013) 55:257–265 261

123



DARR. The 3D data set was acquired using

60 9 210 9 1,024 points and dwell times of 150.4, 30 and

16 ls for x1, x2 and x3 respectively. Each FID averaged

four scans using a recycle delay of 2.3 s for a total

experimental time of 5.5 days.

The 3D experiments on gas vesicles were performed

using a Bruker spectrometer (Bruker Biospin, Billerica,

MA, USA) operating at 900 MHz 1H Larmor frequency

and equipped with a triple-resonance 3.2 mm 1H/13C/15N

E-free MAS probe (Bruker Biospin, Billerica, MA, USA).

The spinning frequency of 16.6 kHz, regulated to ±2 Hz,

was set to avoid overlap of the carbonyl sidebands with the

aromatic and aliphatic signals in the acquisition dimension

(x3). The 15N and 13C p/2 pulses were 7.1 and 3.5 ls,

respectively. TPPM decoupling was 83 kHz (total phase

difference 18�; TPPM pulse length 5.7 ls) during gaps
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Fig. 6 Sidechain correlations by 15N–13C polarization transfer from both backbone and sidechain nitrogens in W28 (a), R44 (b) and K55 (c) of

GvpA
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between REDOR pulses, evolution and acquisition periods.

Mixing periods were 1.4 ms for ZF-TEDOR and 40 ms for

DARR. The 3D data set was acquired using 56 9 210 9

1,536 points and dwell times of 120, 30 and 6 ls for x1, x2

and x3, respectively. Each FID averaged four scans using a

recycle delay of 2.3 s for a total experimental time of

5.2 days.

Results and discussion

Figure 2 compares polarization transfer by SPECIFIC-CP,

broadband DCP and ZF-TEDOR 15N–13C transfers for

GB1 (top) and GvpA (bottom). As expected, we found that

higher 15N–13C transfer efficiencies for GB1 were achieved

with SPECIFIC-CP. Consistent with previously reported

results (Franks et al. 2005), signal intensities for NCO and

NCa transfers in GB1 were approximately 55 and 42 %,

respectively, of those obtained by 1H–13C cross-polariza-

tion. These efficiencies were approximately 1.6 and 1.45

times greater, respectively, than for one-bond optimized

ZF-TEDOR. The situation was significantly different in the

case of gas vesicles. The SPECIFIC-CP NCO transfer is

only 1.17 times more efficient than one-bond ZF-TEDOR

and the NCa transfers are practically identical. Table 1

summarizes these 1D comparisons and corresponding

results for DCP. The loss of peak intensity induced by

mobility in the presence of decoupling is a well known

effect that has been observed in –NH3
? group of alanine

(Long et al. 1994), in methyl groups coordinated to tung-

sten (Maus et al. 1996), and in N–f–MLF–OH (Bajaj et al.

2009). Studies are under way to fully understand this

effect.

Figure 3 shows that SPECIFIC-CP is more sensitive

than ZF-TEDOR to varying levels of 1H decoupling during

transfer in GvpA. It follows that power fluctuations during

decoupling, e.g., due to probe detuning, would result in

sensitivity loss. This can be a limiting factor at high field

and with E-free probes.

In light of the above results, and the ability of ZF-TE-

DOR to implement broadband heteronuclear transfers, 3D

NCC experiments were performed using ZF-TEDOR, with

a mixing time of 1.2 ms chosen to restrict polarization

transfer to the carbons directly bonded to nitrogen atoms.

For the homonuclear transfer DARR was used with a

mixing time of 40 ms chosen to allow polarization to be

transferred far enough to detect cross-peaks throughout the

sidechains.

Figure 4 shows slices of the GB1 spectrum in the x1
15N

plane at 127.7, 116.3 and 118.3 ppm corresponding to the

L12, V21 and V54 amides. For both the intra-residue

correlations (top) and the inter-residue correlations (bot-

tom), the second mixing spreads the polarization along the

full length of the side chain thus allowing optimal resolu-

tion of all the 13C signals in a single experiment. The

resonances are consistent, within ±0.2 ppm, with previ-

ously published assignments (Franks et al. 2005).

Mobile sequences in proteins usually present weak

crosspeaks in SPECIFIC-CP experiments, due to unfavor-

able intermediate timescale dynamics induced by interfer-

ence with proton decoupling fields. We therefore examined

the performance of the ZF-TEDOR-DARR sequence on

GvpA, a functional amyloid (Bayro et al. 2012) in which

mobility may limit the signal intensity. Figure 5 shows

examples of intra-residue and inter-residue correlations for

GvpA in the x1
15N planes at 116.6 and 124.2 ppm, cor-

responding respectively to the S49 and A57 amides. As

expected, the resonances are broader than for the micro-

crystalline GB1, but the side chain correlations are clearly

resolved.

A further advantage of the TEDOR-CC experiment is

the inclusion of 15N–13C correlations within the sidechains

of residues such as tryptophan, arginine and lysine. As

shown in Fig. 6 for W28, R44 and K55 in GvpA, consistent

intra-residue cross-peaks are seen in slices corresponding

to the backbone and sidechain nitrogens. TEDOR mixing

would also include prolines. However, this capability is not

illustrated here because proline is not present in GB1 and

the single proline residue in GvpA is in the highly mobile

C-terminal sequence.

Conclusions

In conclusion, we have shown that a 3D ZF-TEDOR-

DARR MAS experiment generates a full set of intra- and

inter-residue correlations allowing assignments to be

completed in a single experiment. In future work at higher

spinning frequencies, a useful variation might be a ZF-

TEDOR-PAR sequence.
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